Metamath Proof Explorer


Theorem nlimsuc

Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlimsuc AOn¬LimsucA

Proof

Step Hyp Ref Expression
1 sucidg AOnAsucA
2 eloni AOnOrdA
3 ordirr OrdA¬AA
4 2 3 syl AOn¬AA
5 eleq2 sucA=AAsucAAA
6 5 notbid sucA=A¬AsucA¬AA
7 4 6 syl5ibrcom AOnsucA=A¬AsucA
8 1 7 mt2d AOn¬sucA=A
9 8 neqned AOnsucAA
10 onunisuc AOnsucA=A
11 9 10 neeqtrrd AOnsucAsucA
12 11 neneqd AOn¬sucA=sucA
13 12 intn3an3d AOn¬OrdsucAsucAsucA=sucA
14 dflim2 LimsucAOrdsucAsucAsucA=sucA
15 13 14 sylnibr AOn¬LimsucA