Metamath Proof Explorer


Theorem nmbdfnlb

Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion nmbdfnlb TLinFnnormfnTATAnormfnTnormA

Proof

Step Hyp Ref Expression
1 fveq1 T=ifTLinFnnormfnTT×0TA=ifTLinFnnormfnTT×0A
2 1 fveq2d T=ifTLinFnnormfnTT×0TA=ifTLinFnnormfnTT×0A
3 fveq2 T=ifTLinFnnormfnTT×0normfnT=normfnifTLinFnnormfnTT×0
4 3 oveq1d T=ifTLinFnnormfnTT×0normfnTnormA=normfnifTLinFnnormfnTT×0normA
5 2 4 breq12d T=ifTLinFnnormfnTT×0TAnormfnTnormAifTLinFnnormfnTT×0AnormfnifTLinFnnormfnTT×0normA
6 5 imbi2d T=ifTLinFnnormfnTT×0ATAnormfnTnormAAifTLinFnnormfnTT×0AnormfnifTLinFnnormfnTT×0normA
7 eleq1 T=ifTLinFnnormfnTT×0TLinFnifTLinFnnormfnTT×0LinFn
8 3 eleq1d T=ifTLinFnnormfnTT×0normfnTnormfnifTLinFnnormfnTT×0
9 7 8 anbi12d T=ifTLinFnnormfnTT×0TLinFnnormfnTifTLinFnnormfnTT×0LinFnnormfnifTLinFnnormfnTT×0
10 eleq1 ×0=ifTLinFnnormfnTT×0×0LinFnifTLinFnnormfnTT×0LinFn
11 fveq2 ×0=ifTLinFnnormfnTT×0normfn×0=normfnifTLinFnnormfnTT×0
12 11 eleq1d ×0=ifTLinFnnormfnTT×0normfn×0normfnifTLinFnnormfnTT×0
13 10 12 anbi12d ×0=ifTLinFnnormfnTT×0×0LinFnnormfn×0ifTLinFnnormfnTT×0LinFnnormfnifTLinFnnormfnTT×0
14 0lnfn ×0LinFn
15 nmfn0 normfn×0=0
16 0re 0
17 15 16 eqeltri normfn×0
18 14 17 pm3.2i ×0LinFnnormfn×0
19 9 13 18 elimhyp ifTLinFnnormfnTT×0LinFnnormfnifTLinFnnormfnTT×0
20 19 nmbdfnlbi AifTLinFnnormfnTT×0AnormfnifTLinFnnormfnTT×0normA
21 6 20 dedth TLinFnnormfnTATAnormfnTnormA
22 21 3impia TLinFnnormfnTATAnormfnTnormA