Metamath Proof Explorer


Theorem nmeq0

Description: The identity is the only element of the group with zero norm. First part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 24-Nov-2006) (Revised by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X = Base G
nmf.n N = norm G
nmeq0.z 0 ˙ = 0 G
Assertion nmeq0 G NrmGrp A X N A = 0 A = 0 ˙

Proof

Step Hyp Ref Expression
1 nmf.x X = Base G
2 nmf.n N = norm G
3 nmeq0.z 0 ˙ = 0 G
4 eqid dist G = dist G
5 2 1 3 4 nmval A X N A = A dist G 0 ˙
6 5 adantl G NrmGrp A X N A = A dist G 0 ˙
7 6 eqeq1d G NrmGrp A X N A = 0 A dist G 0 ˙ = 0
8 ngpgrp G NrmGrp G Grp
9 8 adantr G NrmGrp A X G Grp
10 1 3 grpidcl G Grp 0 ˙ X
11 9 10 syl G NrmGrp A X 0 ˙ X
12 ngpxms G NrmGrp G ∞MetSp
13 1 4 xmseq0 G ∞MetSp A X 0 ˙ X A dist G 0 ˙ = 0 A = 0 ˙
14 12 13 syl3an1 G NrmGrp A X 0 ˙ X A dist G 0 ˙ = 0 A = 0 ˙
15 11 14 mpd3an3 G NrmGrp A X A dist G 0 ˙ = 0 A = 0 ˙
16 7 15 bitrd G NrmGrp A X N A = 0 A = 0 ˙