Metamath Proof Explorer


Theorem nmeq0

Description: The identity is the only element of the group with zero norm. First part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 24-Nov-2006) (Revised by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X=BaseG
nmf.n N=normG
nmeq0.z 0˙=0G
Assertion nmeq0 GNrmGrpAXNA=0A=0˙

Proof

Step Hyp Ref Expression
1 nmf.x X=BaseG
2 nmf.n N=normG
3 nmeq0.z 0˙=0G
4 eqid distG=distG
5 2 1 3 4 nmval AXNA=AdistG0˙
6 5 adantl GNrmGrpAXNA=AdistG0˙
7 6 eqeq1d GNrmGrpAXNA=0AdistG0˙=0
8 ngpgrp GNrmGrpGGrp
9 8 adantr GNrmGrpAXGGrp
10 1 3 grpidcl GGrp0˙X
11 9 10 syl GNrmGrpAX0˙X
12 ngpxms GNrmGrpG∞MetSp
13 1 4 xmseq0 G∞MetSpAX0˙XAdistG0˙=0A=0˙
14 12 13 syl3an1 GNrmGrpAX0˙XAdistG0˙=0A=0˙
15 11 14 mpd3an3 GNrmGrpAXAdistG0˙=0A=0˙
16 7 15 bitrd GNrmGrpAXNA=0A=0˙