Metamath Proof Explorer


Theorem nmfnge0

Description: The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006) (New usage is discouraged.)

Ref Expression
Assertion nmfnge0 T:0normfnT

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 ffvelcdm T:0T0
3 1 2 mpan2 T:T0
4 3 absge0d T:0T0
5 norm0 norm0=0
6 0le1 01
7 5 6 eqbrtri norm01
8 nmfnlb T:0norm01T0normfnT
9 1 7 8 mp3an23 T:T0normfnT
10 3 abscld T:T0
11 10 rexrd T:T0*
12 nmfnxr T:normfnT*
13 0xr 0*
14 xrletr 0*T0*normfnT*0T0T0normfnT0normfnT
15 13 14 mp3an1 T0*normfnT*0T0T0normfnT0normfnT
16 11 12 15 syl2anc T:0T0T0normfnT0normfnT
17 4 9 16 mp2and T:0normfnT