Metamath Proof Explorer


Theorem nmoptri2i

Description: Triangle-type inequality for the norms of bounded linear operators. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nmoptri.1 SBndLinOp
nmoptri.2 TBndLinOp
Assertion nmoptri2i normopSnormopTnormopS+opT

Proof

Step Hyp Ref Expression
1 nmoptri.1 SBndLinOp
2 nmoptri.2 TBndLinOp
3 1 2 bdophsi S+opTBndLinOp
4 neg1cn 1
5 2 bdophmi 1-1·opTBndLinOp
6 4 5 ax-mp -1·opTBndLinOp
7 3 6 nmoptrii normopS+opT+op-1·opTnormopS+opT+normop-1·opT
8 bdopf SBndLinOpS:
9 1 8 ax-mp S:
10 bdopf TBndLinOpT:
11 2 10 ax-mp T:
12 9 11 hoaddcli S+opT:
13 12 11 honegsubi S+opT+op-1·opT=S+opT-opT
14 9 11 hopncani S+opT-opT=S
15 13 14 eqtri S+opT+op-1·opT=S
16 15 fveq2i normopS+opT+op-1·opT=normopS
17 11 nmopnegi normop-1·opT=normopT
18 17 oveq2i normopS+opT+normop-1·opT=normopS+opT+normopT
19 7 16 18 3brtr3i normopSnormopS+opT+normopT
20 nmopre SBndLinOpnormopS
21 1 20 ax-mp normopS
22 nmopre TBndLinOpnormopT
23 2 22 ax-mp normopT
24 nmopre S+opTBndLinOpnormopS+opT
25 3 24 ax-mp normopS+opT
26 21 23 25 lesubaddi normopSnormopTnormopS+opTnormopSnormopS+opT+normopT
27 19 26 mpbir normopSnormopTnormopS+opT