Metamath Proof Explorer


Theorem nn0diffz0

Description: Upper set of the nonnegative integers. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Assertion nn0diffz0 N 0 0 0 N = N + 1

Proof

Step Hyp Ref Expression
1 nn0uz 0 = 0
2 peano2nn0 N 0 N + 1 0
3 2 1 eleqtrdi N 0 N + 1 0
4 fzouzsplit N + 1 0 0 = 0 ..^ N + 1 N + 1
5 3 4 syl N 0 0 = 0 ..^ N + 1 N + 1
6 1 5 eqtrid N 0 0 = 0 ..^ N + 1 N + 1
7 6 difeq1d N 0 0 0 N = 0 ..^ N + 1 N + 1 0 N
8 uncom N + 1 0 N = 0 N N + 1
9 nn0z N 0 N
10 fzval3 N 0 N = 0 ..^ N + 1
11 9 10 syl N 0 0 N = 0 ..^ N + 1
12 11 uneq1d N 0 0 N N + 1 = 0 ..^ N + 1 N + 1
13 8 12 eqtrid N 0 N + 1 0 N = 0 ..^ N + 1 N + 1
14 13 difeq1d N 0 N + 1 0 N 0 N = 0 ..^ N + 1 N + 1 0 N
15 11 ineq2d N 0 N + 1 0 N = N + 1 0 ..^ N + 1
16 fzouzdisj 0 ..^ N + 1 N + 1 =
17 16 ineqcomi N + 1 0 ..^ N + 1 =
18 15 17 eqtrdi N 0 N + 1 0 N =
19 undif5 N + 1 0 N = N + 1 0 N 0 N = N + 1
20 18 19 syl N 0 N + 1 0 N 0 N = N + 1
21 7 14 20 3eqtr2d N 0 0 0 N = N + 1