Description: A rather pretty lemma for nn0opthi . (Contributed by Raph Levien, 10-Dec-2002)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nn0opthlem1.1 | |
|
nn0opthlem1.2 | |
||
Assertion | nn0opthlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0opthlem1.1 | |
|
2 | nn0opthlem1.2 | |
|
3 | 1nn0 | |
|
4 | 1 3 | nn0addcli | |
5 | 4 2 | nn0le2msqi | |
6 | nn0ltp1le | |
|
7 | 1 2 6 | mp2an | |
8 | 1 1 | nn0mulcli | |
9 | 2nn0 | |
|
10 | 9 1 | nn0mulcli | |
11 | 8 10 | nn0addcli | |
12 | 2 2 | nn0mulcli | |
13 | nn0ltp1le | |
|
14 | 11 12 13 | mp2an | |
15 | 1 | nn0cni | |
16 | ax-1cn | |
|
17 | 15 16 | binom2i | |
18 | 15 16 | addcli | |
19 | 18 | sqvali | |
20 | 15 | sqvali | |
21 | 20 | oveq1i | |
22 | 16 | sqvali | |
23 | 21 22 | oveq12i | |
24 | 17 19 23 | 3eqtr3i | |
25 | 15 | mulridi | |
26 | 25 | oveq2i | |
27 | 26 | oveq2i | |
28 | 16 | mulridi | |
29 | 27 28 | oveq12i | |
30 | 24 29 | eqtri | |
31 | 30 | breq1i | |
32 | 14 31 | bitr4i | |
33 | 5 7 32 | 3bitr4i | |