Metamath Proof Explorer


Theorem nn0opthlem1

Description: A rather pretty lemma for nn0opthi . (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses nn0opthlem1.1 A0
nn0opthlem1.2 C0
Assertion nn0opthlem1 A<CAA+2A<CC

Proof

Step Hyp Ref Expression
1 nn0opthlem1.1 A0
2 nn0opthlem1.2 C0
3 1nn0 10
4 1 3 nn0addcli A+10
5 4 2 nn0le2msqi A+1CA+1A+1CC
6 nn0ltp1le A0C0A<CA+1C
7 1 2 6 mp2an A<CA+1C
8 1 1 nn0mulcli AA0
9 2nn0 20
10 9 1 nn0mulcli 2A0
11 8 10 nn0addcli AA+2A0
12 2 2 nn0mulcli CC0
13 nn0ltp1le AA+2A0CC0AA+2A<CCAA+2A+1CC
14 11 12 13 mp2an AA+2A<CCAA+2A+1CC
15 1 nn0cni A
16 ax-1cn 1
17 15 16 binom2i A+12=A2+2A1+12
18 15 16 addcli A+1
19 18 sqvali A+12=A+1A+1
20 15 sqvali A2=AA
21 20 oveq1i A2+2A1=AA+2A1
22 16 sqvali 12=11
23 21 22 oveq12i A2+2A1+12=AA+2A1+11
24 17 19 23 3eqtr3i A+1A+1=AA+2A1+11
25 15 mulridi A1=A
26 25 oveq2i 2A1=2A
27 26 oveq2i AA+2A1=AA+2A
28 16 mulridi 11=1
29 27 28 oveq12i AA+2A1+11=AA+2A+1
30 24 29 eqtri A+1A+1=AA+2A+1
31 30 breq1i A+1A+1CCAA+2A+1CC
32 14 31 bitr4i AA+2A<CCA+1A+1CC
33 5 7 32 3bitr4i A<CAA+2A<CC