Metamath Proof Explorer


Theorem nnaordi

Description: Ordering property of addition. Proposition 8.4 of TakeutiZaring p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnaordi BωCωABC+𝑜AC+𝑜B

Proof

Step Hyp Ref Expression
1 elnn ABBωAω
2 1 ancoms BωABAω
3 2 adantll CωBωABAω
4 nnord BωOrdB
5 ordsucss OrdBABsucAB
6 4 5 syl BωABsucAB
7 6 ad2antlr CωBωAωABsucAB
8 peano2b AωsucAω
9 oveq2 x=sucAC+𝑜x=C+𝑜sucA
10 9 sseq2d x=sucAC+𝑜sucAC+𝑜xC+𝑜sucAC+𝑜sucA
11 10 imbi2d x=sucACωC+𝑜sucAC+𝑜xCωC+𝑜sucAC+𝑜sucA
12 oveq2 x=yC+𝑜x=C+𝑜y
13 12 sseq2d x=yC+𝑜sucAC+𝑜xC+𝑜sucAC+𝑜y
14 13 imbi2d x=yCωC+𝑜sucAC+𝑜xCωC+𝑜sucAC+𝑜y
15 oveq2 x=sucyC+𝑜x=C+𝑜sucy
16 15 sseq2d x=sucyC+𝑜sucAC+𝑜xC+𝑜sucAC+𝑜sucy
17 16 imbi2d x=sucyCωC+𝑜sucAC+𝑜xCωC+𝑜sucAC+𝑜sucy
18 oveq2 x=BC+𝑜x=C+𝑜B
19 18 sseq2d x=BC+𝑜sucAC+𝑜xC+𝑜sucAC+𝑜B
20 19 imbi2d x=BCωC+𝑜sucAC+𝑜xCωC+𝑜sucAC+𝑜B
21 ssid C+𝑜sucAC+𝑜sucA
22 21 2a1i sucAωCωC+𝑜sucAC+𝑜sucA
23 sssucid C+𝑜ysucC+𝑜y
24 sstr2 C+𝑜sucAC+𝑜yC+𝑜ysucC+𝑜yC+𝑜sucAsucC+𝑜y
25 23 24 mpi C+𝑜sucAC+𝑜yC+𝑜sucAsucC+𝑜y
26 nnasuc CωyωC+𝑜sucy=sucC+𝑜y
27 26 ancoms yωCωC+𝑜sucy=sucC+𝑜y
28 27 sseq2d yωCωC+𝑜sucAC+𝑜sucyC+𝑜sucAsucC+𝑜y
29 25 28 imbitrrid yωCωC+𝑜sucAC+𝑜yC+𝑜sucAC+𝑜sucy
30 29 ex yωCωC+𝑜sucAC+𝑜yC+𝑜sucAC+𝑜sucy
31 30 ad2antrr yωsucAωsucAyCωC+𝑜sucAC+𝑜yC+𝑜sucAC+𝑜sucy
32 31 a2d yωsucAωsucAyCωC+𝑜sucAC+𝑜yCωC+𝑜sucAC+𝑜sucy
33 11 14 17 20 22 32 findsg BωsucAωsucABCωC+𝑜sucAC+𝑜B
34 33 exp31 BωsucAωsucABCωC+𝑜sucAC+𝑜B
35 8 34 biimtrid BωAωsucABCωC+𝑜sucAC+𝑜B
36 35 com4r CωBωAωsucABC+𝑜sucAC+𝑜B
37 36 imp31 CωBωAωsucABC+𝑜sucAC+𝑜B
38 nnasuc CωAωC+𝑜sucA=sucC+𝑜A
39 38 sseq1d CωAωC+𝑜sucAC+𝑜BsucC+𝑜AC+𝑜B
40 ovex C+𝑜AV
41 sucssel C+𝑜AVsucC+𝑜AC+𝑜BC+𝑜AC+𝑜B
42 40 41 ax-mp sucC+𝑜AC+𝑜BC+𝑜AC+𝑜B
43 39 42 syl6bi CωAωC+𝑜sucAC+𝑜BC+𝑜AC+𝑜B
44 43 adantlr CωBωAωC+𝑜sucAC+𝑜BC+𝑜AC+𝑜B
45 7 37 44 3syld CωBωAωABC+𝑜AC+𝑜B
46 45 imp CωBωAωABC+𝑜AC+𝑜B
47 46 an32s CωBωABAωC+𝑜AC+𝑜B
48 3 47 mpdan CωBωABC+𝑜AC+𝑜B
49 48 ex CωBωABC+𝑜AC+𝑜B
50 49 ancoms BωCωABC+𝑜AC+𝑜B