Metamath Proof Explorer


Theorem nnasmo

Description: There is at most one left additive inverse for natural number addition. (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Assertion nnasmo A ω * x ω A + 𝑜 x = B

Proof

Step Hyp Ref Expression
1 eqtr3 A + 𝑜 x = B A + 𝑜 y = B A + 𝑜 x = A + 𝑜 y
2 nnacan A ω x ω y ω A + 𝑜 x = A + 𝑜 y x = y
3 1 2 syl5ib A ω x ω y ω A + 𝑜 x = B A + 𝑜 y = B x = y
4 3 3expb A ω x ω y ω A + 𝑜 x = B A + 𝑜 y = B x = y
5 4 ralrimivva A ω x ω y ω A + 𝑜 x = B A + 𝑜 y = B x = y
6 oveq2 x = y A + 𝑜 x = A + 𝑜 y
7 6 eqeq1d x = y A + 𝑜 x = B A + 𝑜 y = B
8 7 rmo4 * x ω A + 𝑜 x = B x ω y ω A + 𝑜 x = B A + 𝑜 y = B x = y
9 5 8 sylibr A ω * x ω A + 𝑜 x = B