Metamath Proof Explorer


Theorem nnaword

Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnaword AωBωCωABC+𝑜AC+𝑜B

Proof

Step Hyp Ref Expression
1 nnaord BωAωCωBAC+𝑜BC+𝑜A
2 1 3com12 AωBωCωBAC+𝑜BC+𝑜A
3 2 notbid AωBωCω¬BA¬C+𝑜BC+𝑜A
4 nnord AωOrdA
5 nnord BωOrdB
6 ordtri1 OrdAOrdBAB¬BA
7 4 5 6 syl2an AωBωAB¬BA
8 7 3adant3 AωBωCωAB¬BA
9 nnacl CωAωC+𝑜Aω
10 9 ancoms AωCωC+𝑜Aω
11 10 3adant2 AωBωCωC+𝑜Aω
12 nnacl CωBωC+𝑜Bω
13 12 ancoms BωCωC+𝑜Bω
14 13 3adant1 AωBωCωC+𝑜Bω
15 nnord C+𝑜AωOrdC+𝑜A
16 nnord C+𝑜BωOrdC+𝑜B
17 ordtri1 OrdC+𝑜AOrdC+𝑜BC+𝑜AC+𝑜B¬C+𝑜BC+𝑜A
18 15 16 17 syl2an C+𝑜AωC+𝑜BωC+𝑜AC+𝑜B¬C+𝑜BC+𝑜A
19 11 14 18 syl2anc AωBωCωC+𝑜AC+𝑜B¬C+𝑜BC+𝑜A
20 3 8 19 3bitr4d AωBωCωABC+𝑜AC+𝑜B