Metamath Proof Explorer


Theorem nnmass

Description: Multiplication of natural numbers is associative. Theorem 4K(4) of Enderton p. 81. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnmass A ω B ω C ω A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C

Proof

Step Hyp Ref Expression
1 oveq2 x = C A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 C
2 oveq2 x = C B 𝑜 x = B 𝑜 C
3 2 oveq2d x = C A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 C
4 1 3 eqeq12d x = C A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C
5 4 imbi2d x = C A ω B ω A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x A ω B ω A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C
6 oveq2 x = A 𝑜 B 𝑜 x = A 𝑜 B 𝑜
7 oveq2 x = B 𝑜 x = B 𝑜
8 7 oveq2d x = A 𝑜 B 𝑜 x = A 𝑜 B 𝑜
9 6 8 eqeq12d x = A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x A 𝑜 B 𝑜 = A 𝑜 B 𝑜
10 oveq2 x = y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 y
11 oveq2 x = y B 𝑜 x = B 𝑜 y
12 11 oveq2d x = y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 y
13 10 12 eqeq12d x = y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y
14 oveq2 x = suc y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 suc y
15 oveq2 x = suc y B 𝑜 x = B 𝑜 suc y
16 15 oveq2d x = suc y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 suc y
17 14 16 eqeq12d x = suc y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y
18 nnmcl A ω B ω A 𝑜 B ω
19 nnm0 A 𝑜 B ω A 𝑜 B 𝑜 =
20 18 19 syl A ω B ω A 𝑜 B 𝑜 =
21 nnm0 B ω B 𝑜 =
22 21 oveq2d B ω A 𝑜 B 𝑜 = A 𝑜
23 nnm0 A ω A 𝑜 =
24 22 23 sylan9eqr A ω B ω A 𝑜 B 𝑜 =
25 20 24 eqtr4d A ω B ω A 𝑜 B 𝑜 = A 𝑜 B 𝑜
26 oveq1 A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
27 nnmsuc A 𝑜 B ω y ω A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
28 18 27 stoic3 A ω B ω y ω A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
29 nnmsuc B ω y ω B 𝑜 suc y = B 𝑜 y + 𝑜 B
30 29 3adant1 A ω B ω y ω B 𝑜 suc y = B 𝑜 y + 𝑜 B
31 30 oveq2d A ω B ω y ω A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 y + 𝑜 B
32 nnmcl B ω y ω B 𝑜 y ω
33 nndi A ω B 𝑜 y ω B ω A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
34 32 33 syl3an2 A ω B ω y ω B ω A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
35 34 3exp A ω B ω y ω B ω A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
36 35 expd A ω B ω y ω B ω A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
37 36 com34 A ω B ω B ω y ω A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
38 37 pm2.43d A ω B ω y ω A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
39 38 3imp A ω B ω y ω A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
40 31 39 eqtrd A ω B ω y ω A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
41 28 40 eqeq12d A ω B ω y ω A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
42 26 41 syl5ibr A ω B ω y ω A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y
43 42 3exp A ω B ω y ω A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y
44 43 com3r y ω A ω B ω A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y
45 44 impd y ω A ω B ω A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y
46 9 13 17 25 45 finds2 x ω A ω B ω A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
47 5 46 vtoclga C ω A ω B ω A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C
48 47 expdcom A ω B ω C ω A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C
49 48 3imp A ω B ω C ω A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C