Metamath Proof Explorer


Theorem nnncan1

Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion nnncan1 ABCA-B-AC=CB

Proof

Step Hyp Ref Expression
1 subcl ACAC
2 1 3adant2 ABCAC
3 sub32 ABACA-B-AC=A-AC-B
4 2 3 syld3an3 ABCA-B-AC=A-AC-B
5 nncan ACAAC=C
6 5 3adant2 ABCAAC=C
7 6 oveq1d ABCA-AC-B=CB
8 4 7 eqtrd ABCA-B-AC=CB