Metamath Proof Explorer


Theorem nnrecl

Description: There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of Apostol p. 28. (Contributed by NM, 8-Nov-2004)

Ref Expression
Assertion nnrecl A0<An1n<A

Proof

Step Hyp Ref Expression
1 simpl A0<AA
2 gt0ne0 A0<AA0
3 1 2 rereccld A0<A1A
4 arch 1An1A<n
5 3 4 syl A0<An1A<n
6 recgt0 A0<A0<1A
7 3 6 jca A0<A1A0<1A
8 nnre nn
9 nngt0 n0<n
10 8 9 jca nn0<n
11 ltrec 1A0<1An0<n1A<n1n<11A
12 7 10 11 syl2an A0<An1A<n1n<11A
13 recn AA
14 13 adantr A0<AA
15 14 2 recrecd A0<A11A=A
16 15 breq2d A0<A1n<11A1n<A
17 16 adantr A0<An1n<11A1n<A
18 12 17 bitrd A0<An1A<n1n<A
19 18 rexbidva A0<An1A<nn1n<A
20 5 19 mpbid A0<An1n<A