Metamath Proof Explorer


Theorem nnsdomg

Description: Omega strictly dominates a natural number. Example 3 of Enderton p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998) Avoid ax-pow . (Revised by BTernaryTau, 7-Jan-2025)

Ref Expression
Assertion nnsdomg ωVAωAω

Proof

Step Hyp Ref Expression
1 ordom Ordω
2 ordelss OrdωAωAω
3 1 2 mpan AωAω
4 3 adantr AωωVAω
5 nnfi AωAFin
6 ssdomfi2 AFinωVAωAω
7 5 6 syl3an1 AωωVAωAω
8 4 7 mpd3an3 AωωVAω
9 8 ancoms ωVAωAω
10 ominf ¬ωFin
11 ensymfib AFinAωωA
12 5 11 syl AωAωωA
13 breq2 x=AωxωA
14 13 rspcev AωωAxωωx
15 isfi ωFinxωωx
16 14 15 sylibr AωωAωFin
17 16 ex AωωAωFin
18 12 17 sylbid AωAωωFin
19 10 18 mtoi Aω¬Aω
20 19 adantl ωVAω¬Aω
21 brsdom AωAω¬Aω
22 9 20 21 sylanbrc ωVAωAω