Metamath Proof Explorer


Theorem nnsgrpnmnd

Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypothesis nnsgrp.m M=fld𝑠
Assertion nnsgrpnmnd MMnd

Proof

Step Hyp Ref Expression
1 nnsgrp.m M=fld𝑠
2 nnsscn
3 1 cnfldsrngbas =BaseM
4 2 3 ax-mp =BaseM
5 nnex V
6 1 cnfldsrngadd V+=+M
7 5 6 ax-mp +=+M
8 4 7 isnmnd zxz+xxMMnd
9 1nn 1
10 9 a1i z1
11 oveq2 x=1z+x=z+1
12 id x=1x=1
13 11 12 neeq12d x=1z+xxz+11
14 13 adantl zx=1z+xxz+11
15 nnne0 zz0
16 15 necomd z0z
17 1cnd z1
18 nncn zz
19 17 17 18 subadd2d z11=zz+1=1
20 1m1e0 11=0
21 20 a1i z11=0
22 21 eqeq1d z11=z0=z
23 19 22 bitr3d zz+1=10=z
24 23 necon3bid zz+110z
25 16 24 mpbird zz+11
26 10 14 25 rspcedvd zxz+xx
27 8 26 mprg MMnd