Metamath Proof Explorer


Theorem nnsum4primes4

Description: 4 is the sum of at most 4 (actually 2) primes. (Contributed by AV, 23-Jul-2020) (Proof shortened by AV, 2-Aug-2020)

Ref Expression
Assertion nnsum4primes4 df1dd44=k=1dfk

Proof

Step Hyp Ref Expression
1 nnsum3primes4 df1dd34=k=1dfk
2 3lt4 3<4
3 nnre dd
4 3re 3
5 4 a1i d3
6 4re 4
7 6 a1i d4
8 leltletr d34d33<4d4
9 3 5 7 8 syl3anc dd33<4d4
10 2 9 mpan2i dd3d4
11 10 anim1d dd34=k=1dfkd44=k=1dfk
12 11 reximdv df1dd34=k=1dfkf1dd44=k=1dfk
13 12 reximia df1dd34=k=1dfkdf1dd44=k=1dfk
14 1 13 ax-mp df1dd44=k=1dfk