Metamath Proof Explorer


Theorem nodenselem4

Description: Lemma for nodense . Show that a particular abstraction is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion nodenselem4 ANoBNoA<sBaOn|AaBaOn

Proof

Step Hyp Ref Expression
1 simpll ANoBNoA<sBANo
2 simplr ANoBNoA<sBBNo
3 sltso <sOrNo
4 sonr <sOrNoANo¬A<sA
5 3 4 mpan ANo¬A<sA
6 5 adantr ANoBNo¬A<sA
7 breq2 A=BA<sAA<sB
8 7 notbid A=B¬A<sA¬A<sB
9 6 8 syl5ibcom ANoBNoA=B¬A<sB
10 9 necon2ad ANoBNoA<sBAB
11 10 imp ANoBNoA<sBAB
12 nosepon ANoBNoABaOn|AaBaOn
13 1 2 11 12 syl3anc ANoBNoA<sBaOn|AaBaOn