Metamath Proof Explorer


Theorem nodenselem4

Description: Lemma for nodense . Show that a particular abstraction is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion nodenselem4 A No B No A < s B a On | A a B a On

Proof

Step Hyp Ref Expression
1 simpll A No B No A < s B A No
2 simplr A No B No A < s B B No
3 sltso < s Or No
4 sonr < s Or No A No ¬ A < s A
5 3 4 mpan A No ¬ A < s A
6 5 adantr A No B No ¬ A < s A
7 breq2 A = B A < s A A < s B
8 7 notbid A = B ¬ A < s A ¬ A < s B
9 6 8 syl5ibcom A No B No A = B ¬ A < s B
10 9 necon2ad A No B No A < s B A B
11 10 imp A No B No A < s B A B
12 nosepon A No B No A B a On | A a B a On
13 1 2 11 12 syl3anc A No B No A < s B a On | A a B a On