Metamath Proof Explorer


Theorem noetainflem3

Description: Lemma for noeta . W bounds B below . (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypotheses noetainflem.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
noetainflem.2 W=TsucbdayAdomT×2𝑜
Assertion noetainflem3 AVBNoBVYBW<sY

Proof

Step Hyp Ref Expression
1 noetainflem.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
2 noetainflem.2 W=TsucbdayAdomT×2𝑜
3 simpl2 AVBNoBVYBBNo
4 simpl3 AVBNoBVYBBV
5 1 2 noetainflem2 BNoBVWdomT=T
6 3 4 5 syl2anc AVBNoBVYBWdomT=T
7 simpr AVBNoBVYBYB
8 1 noinfbnd1 BNoBVYBT<sYdomT
9 3 4 7 8 syl3anc AVBNoBVYBT<sYdomT
10 6 9 eqbrtrd AVBNoBVYBWdomT<sYdomT
11 1 2 noetainflem1 AVBNoBVWNo
12 11 adantr AVBNoBVYBWNo
13 simp2 AVBNoBVBNo
14 13 sselda AVBNoBVYBYNo
15 1 noinfno BNoBVTNo
16 3 4 15 syl2anc AVBNoBVYBTNo
17 nodmon TNodomTOn
18 16 17 syl AVBNoBVYBdomTOn
19 sltres WNoYNodomTOnWdomT<sYdomTW<sY
20 12 14 18 19 syl3anc AVBNoBVYBWdomT<sYdomTW<sY
21 10 20 mpd AVBNoBVYBW<sY