Metamath Proof Explorer


Theorem nprm

Description: A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion nprm A2B2¬AB

Proof

Step Hyp Ref Expression
1 eluzelz A2A
2 1 adantr A2B2A
3 2 zred A2B2A
4 eluz2gt1 B21<B
5 4 adantl A2B21<B
6 eluzelz B2B
7 6 adantl A2B2B
8 7 zred A2B2B
9 eluz2nn A2A
10 9 adantr A2B2A
11 10 nngt0d A2B20<A
12 ltmulgt11 AB0<A1<BA<AB
13 3 8 11 12 syl3anc A2B21<BA<AB
14 5 13 mpbid A2B2A<AB
15 3 14 ltned A2B2AAB
16 dvdsmul1 ABAAB
17 1 6 16 syl2an A2B2AAB
18 isprm4 ABAB2x2xABx=AB
19 18 simprbi ABx2xABx=AB
20 breq1 x=AxABAAB
21 eqeq1 x=Ax=ABA=AB
22 20 21 imbi12d x=AxABx=ABAABA=AB
23 22 rspcv A2x2xABx=ABAABA=AB
24 19 23 syl5 A2ABAABA=AB
25 24 adantr A2B2ABAABA=AB
26 17 25 mpid A2B2ABA=AB
27 26 necon3ad A2B2AAB¬AB
28 15 27 mpd A2B2¬AB