Metamath Proof Explorer


Theorem ntrclsss

Description: If interior and closure functions are related then a subset relation of a pair of function values is equivalent to subset relation of a pair of the other function's values. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
ntrcls.d D=OB
ntrcls.r φIDK
ntrclsfv.s φS𝒫B
ntrclsfv.t φT𝒫B
Assertion ntrclsss φISITKBTKBS

Proof

Step Hyp Ref Expression
1 ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
2 ntrcls.d D=OB
3 ntrcls.r φIDK
4 ntrclsfv.s φS𝒫B
5 ntrclsfv.t φT𝒫B
6 1 2 3 4 ntrclsfv φIS=BKBS
7 1 2 3 5 ntrclsfv φIT=BKBT
8 6 7 sseq12d φISITBKBSBKBT
9 1 2 3 ntrclskex φK𝒫B𝒫B
10 9 ancli φφK𝒫B𝒫B
11 elmapi K𝒫B𝒫BK:𝒫B𝒫B
12 11 adantl φK𝒫B𝒫BK:𝒫B𝒫B
13 2 3 ntrclsrcomplex φBT𝒫B
14 13 adantr φK𝒫B𝒫BBT𝒫B
15 12 14 ffvelcdmd φK𝒫B𝒫BKBT𝒫B
16 15 elpwid φK𝒫B𝒫BKBTB
17 2 3 ntrclsrcomplex φBS𝒫B
18 17 adantr φK𝒫B𝒫BBS𝒫B
19 12 18 ffvelcdmd φK𝒫B𝒫BKBS𝒫B
20 19 elpwid φK𝒫B𝒫BKBSB
21 16 20 jca φK𝒫B𝒫BKBTBKBSB
22 sscon34b KBTBKBSBKBTKBSBKBSBKBT
23 10 21 22 3syl φKBTKBSBKBSBKBT
24 8 23 bitr4d φISITKBTKBS