Metamath Proof Explorer


Theorem ntrneiel

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
ntrnei.x φXB
ntrnei.s φS𝒫B
Assertion ntrneiel φXISSNX

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 ntrnei.x φXB
5 ntrnei.s φS𝒫B
6 fveq2 m=SIm=IS
7 6 eleq2d m=SXImXIS
8 7 elrab3 S𝒫BSm𝒫B|XImXIS
9 5 8 syl φSm𝒫B|XImXIS
10 1 2 3 ntrneibex φBV
11 10 pwexd φ𝒫BV
12 1 2 3 ntrneiiex φI𝒫B𝒫B
13 eqid FI=FI
14 1 11 10 2 12 13 4 fsovfvfvd φFIX=m𝒫B|XIm
15 1 2 3 ntrneifv1 φFI=N
16 15 fveq1d φFIX=NX
17 14 16 eqtr3d φm𝒫B|XIm=NX
18 17 eleq2d φSm𝒫B|XImSNX
19 9 18 bitr3d φXISSNX