Metamath Proof Explorer


Theorem ntrneifv1

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then the function value of F is the neighborhood function. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneifv1 φ F I = N

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 1 2 3 ntrneif1o φ F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
5 f1ofn F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B F Fn 𝒫 B 𝒫 B
6 4 5 syl φ F Fn 𝒫 B 𝒫 B
7 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
8 6 7 jca φ F Fn 𝒫 B 𝒫 B I 𝒫 B 𝒫 B
9 fnfun F Fn 𝒫 B 𝒫 B Fun F
10 9 adantr F Fn 𝒫 B 𝒫 B I 𝒫 B 𝒫 B Fun F
11 fndm F Fn 𝒫 B 𝒫 B dom F = 𝒫 B 𝒫 B
12 11 eleq2d F Fn 𝒫 B 𝒫 B I dom F I 𝒫 B 𝒫 B
13 12 biimpar F Fn 𝒫 B 𝒫 B I 𝒫 B 𝒫 B I dom F
14 10 13 jca F Fn 𝒫 B 𝒫 B I 𝒫 B 𝒫 B Fun F I dom F
15 funbrfvb Fun F I dom F F I = N I F N
16 8 14 15 3syl φ F I = N I F N
17 3 16 mpbird φ F I = N