Metamath Proof Explorer


Theorem ntrneifv1

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then the function value of F is the neighborhood function. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
Assertion ntrneifv1 φFI=N

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 1 2 3 ntrneif1o φF:𝒫B𝒫B1-1 onto𝒫𝒫BB
5 f1ofn F:𝒫B𝒫B1-1 onto𝒫𝒫BBFFn𝒫B𝒫B
6 4 5 syl φFFn𝒫B𝒫B
7 1 2 3 ntrneiiex φI𝒫B𝒫B
8 6 7 jca φFFn𝒫B𝒫BI𝒫B𝒫B
9 fnfun FFn𝒫B𝒫BFunF
10 9 adantr FFn𝒫B𝒫BI𝒫B𝒫BFunF
11 fndm FFn𝒫B𝒫BdomF=𝒫B𝒫B
12 11 eleq2d FFn𝒫B𝒫BIdomFI𝒫B𝒫B
13 12 biimpar FFn𝒫B𝒫BI𝒫B𝒫BIdomF
14 10 13 jca FFn𝒫B𝒫BI𝒫B𝒫BFunFIdomF
15 funbrfvb FunFIdomFFI=NIFN
16 8 14 15 3syl φFI=NIFN
17 3 16 mpbird φFI=N