Metamath Proof Explorer


Theorem ntrneifv2

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then the function value of converse of F is the interior function. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
Assertion ntrneifv2 φF-1N=I

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 1 2 3 ntrneif1o φF:𝒫B𝒫B1-1 onto𝒫𝒫BB
5 1 2 3 ntrneinex φN𝒫𝒫BB
6 dff1o3 F:𝒫B𝒫B1-1 onto𝒫𝒫BBF:𝒫B𝒫Bonto𝒫𝒫BBFunF-1
7 6 simprbi F:𝒫B𝒫B1-1 onto𝒫𝒫BBFunF-1
8 7 adantr F:𝒫B𝒫B1-1 onto𝒫𝒫BBN𝒫𝒫BBFunF-1
9 df-rn ranF=domF-1
10 f1ofo F:𝒫B𝒫B1-1 onto𝒫𝒫BBF:𝒫B𝒫Bonto𝒫𝒫BB
11 forn F:𝒫B𝒫Bonto𝒫𝒫BBranF=𝒫𝒫BB
12 10 11 syl F:𝒫B𝒫B1-1 onto𝒫𝒫BBranF=𝒫𝒫BB
13 9 12 eqtr3id F:𝒫B𝒫B1-1 onto𝒫𝒫BBdomF-1=𝒫𝒫BB
14 13 eleq2d F:𝒫B𝒫B1-1 onto𝒫𝒫BBNdomF-1N𝒫𝒫BB
15 14 biimpar F:𝒫B𝒫B1-1 onto𝒫𝒫BBN𝒫𝒫BBNdomF-1
16 8 15 jca F:𝒫B𝒫B1-1 onto𝒫𝒫BBN𝒫𝒫BBFunF-1NdomF-1
17 4 5 16 syl2anc φFunF-1NdomF-1
18 funbrfvb FunF-1NdomF-1F-1N=INF-1I
19 17 18 syl φF-1N=INF-1I
20 1 2 3 ntrneiiex φI𝒫B𝒫B
21 brcnvg N𝒫𝒫BBI𝒫B𝒫BNF-1IIFN
22 5 20 21 syl2anc φNF-1IIFN
23 19 22 bitrd φF-1N=IIFN
24 3 23 mpbird φF-1N=I