Metamath Proof Explorer


Theorem ntrneifv3

Description: The value of the neighbors (convergents) expressed in terms of the interior (closure) function. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
ntrnei.x φ X B
Assertion ntrneifv3 φ N X = s 𝒫 B | X I s

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 ntrnei.x φ X B
5 dfin5 𝒫 B N X = s 𝒫 B | s N X
6 1 2 3 ntrneinex φ N 𝒫 𝒫 B B
7 elmapi N 𝒫 𝒫 B B N : B 𝒫 𝒫 B
8 6 7 syl φ N : B 𝒫 𝒫 B
9 8 4 ffvelrnd φ N X 𝒫 𝒫 B
10 9 elpwid φ N X 𝒫 B
11 sseqin2 N X 𝒫 B 𝒫 B N X = N X
12 10 11 sylib φ 𝒫 B N X = N X
13 3 adantr φ s 𝒫 B I F N
14 4 adantr φ s 𝒫 B X B
15 simpr φ s 𝒫 B s 𝒫 B
16 1 2 13 14 15 ntrneiel φ s 𝒫 B X I s s N X
17 16 bicomd φ s 𝒫 B s N X X I s
18 17 rabbidva φ s 𝒫 B | s N X = s 𝒫 B | X I s
19 5 12 18 3eqtr3a φ N X = s 𝒫 B | X I s