Metamath Proof Explorer


Theorem ntrneifv3

Description: The value of the neighbors (convergents) expressed in terms of the interior (closure) function. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
ntrnei.x φXB
Assertion ntrneifv3 φNX=s𝒫B|XIs

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 ntrnei.x φXB
5 dfin5 𝒫BNX=s𝒫B|sNX
6 1 2 3 ntrneinex φN𝒫𝒫BB
7 elmapi N𝒫𝒫BBN:B𝒫𝒫B
8 6 7 syl φN:B𝒫𝒫B
9 8 4 ffvelcdmd φNX𝒫𝒫B
10 9 elpwid φNX𝒫B
11 sseqin2 NX𝒫B𝒫BNX=NX
12 10 11 sylib φ𝒫BNX=NX
13 3 adantr φs𝒫BIFN
14 4 adantr φs𝒫BXB
15 simpr φs𝒫Bs𝒫B
16 1 2 13 14 15 ntrneiel φs𝒫BXIssNX
17 16 bicomd φs𝒫BsNXXIs
18 17 rabbidva φs𝒫B|sNX=s𝒫B|XIs
19 5 12 18 3eqtr3a φNX=s𝒫B|XIs