Metamath Proof Explorer


Theorem ntrneifv4

Description: The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
ntrneifv.s φS𝒫B
Assertion ntrneifv4 φIS=xB|SNx

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 ntrneifv.s φS𝒫B
5 dfin5 BIS=xB|xIS
6 1 2 3 ntrneiiex φI𝒫B𝒫B
7 elmapi I𝒫B𝒫BI:𝒫B𝒫B
8 6 7 syl φI:𝒫B𝒫B
9 8 4 ffvelcdmd φIS𝒫B
10 9 elpwid φISB
11 sseqin2 ISBBIS=IS
12 10 11 sylib φBIS=IS
13 3 adantr φxBIFN
14 simpr φxBxB
15 4 adantr φxBS𝒫B
16 1 2 13 14 15 ntrneiel φxBxISSNx
17 16 rabbidva φxB|xIS=xB|SNx
18 5 12 17 3eqtr3a φIS=xB|SNx