Metamath Proof Explorer


Theorem ntrneik4

Description: Idempotence of the interior function is equivalent to stating a set, s , is a neighborhood of a point, x is equivalent to there existing a special neighborhood, u , of x such that a point is an element of the special neighborhood if and only if s is also a neighborhood of the point. (Contributed by RP, 11-Jul-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneik4 φ s 𝒫 B I I s = I s x B s 𝒫 B s N x u N x y B y u s N y

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 1 2 3 ntrneik4w φ s 𝒫 B I I s = I s x B s 𝒫 B s N x I s N x
5 3 ad2antrr φ x B s 𝒫 B I F N
6 simplr φ x B s 𝒫 B x B
7 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
8 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
9 7 8 syl φ I : 𝒫 B 𝒫 B
10 9 ffvelrnda φ s 𝒫 B I s 𝒫 B
11 10 adantlr φ x B s 𝒫 B I s 𝒫 B
12 1 2 5 6 11 ntrneiel φ x B s 𝒫 B x I I s I s N x
13 simpr φ x B s 𝒫 B s 𝒫 B
14 1 2 5 6 13 ntrneiel2 φ x B s 𝒫 B x I I s u N x y B y u s N y
15 12 14 bitr3d φ x B s 𝒫 B I s N x u N x y B y u s N y
16 15 bibi2d φ x B s 𝒫 B s N x I s N x s N x u N x y B y u s N y
17 16 ralbidva φ x B s 𝒫 B s N x I s N x s 𝒫 B s N x u N x y B y u s N y
18 17 ralbidva φ x B s 𝒫 B s N x I s N x x B s 𝒫 B s N x u N x y B y u s N y
19 4 18 bitrd φ s 𝒫 B I I s = I s x B s 𝒫 B s N x u N x y B y u s N y