Metamath Proof Explorer


Theorem ntrneik4w

Description: Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneik4w φ s 𝒫 B I I s = I s x B s 𝒫 B s N x I s N x

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 dfcleq I s = I I s x x I s x I I s
5 eqcom I I s = I s I s = I I s
6 ralv x V x I s x I I s x x I s x I I s
7 4 5 6 3bitr4i I I s = I s x V x I s x I I s
8 ssv B V
9 8 a1i φ s 𝒫 B B V
10 vex x V
11 eldif x V B x V ¬ x B
12 10 11 mpbiran x V B ¬ x B
13 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
14 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
15 13 14 syl φ I : 𝒫 B 𝒫 B
16 15 ffvelrnda φ s 𝒫 B I s 𝒫 B
17 16 elpwid φ s 𝒫 B I s B
18 17 sseld φ s 𝒫 B x I s x B
19 18 con3dimp φ s 𝒫 B ¬ x B ¬ x I s
20 15 adantr φ s 𝒫 B I : 𝒫 B 𝒫 B
21 20 16 ffvelrnd φ s 𝒫 B I I s 𝒫 B
22 21 elpwid φ s 𝒫 B I I s B
23 22 sseld φ s 𝒫 B x I I s x B
24 23 con3dimp φ s 𝒫 B ¬ x B ¬ x I I s
25 19 24 2falsed φ s 𝒫 B ¬ x B x I s x I I s
26 25 ex φ s 𝒫 B ¬ x B x I s x I I s
27 12 26 syl5bi φ s 𝒫 B x V B x I s x I I s
28 27 ralrimiv φ s 𝒫 B x V B x I s x I I s
29 9 28 raldifeq φ s 𝒫 B x B x I s x I I s x V x I s x I I s
30 3 adantr φ s 𝒫 B I F N
31 30 adantr φ s 𝒫 B x B I F N
32 simpr φ s 𝒫 B x B x B
33 simplr φ s 𝒫 B x B s 𝒫 B
34 1 2 31 32 33 ntrneiel φ s 𝒫 B x B x I s s N x
35 16 adantr φ s 𝒫 B x B I s 𝒫 B
36 1 2 31 32 35 ntrneiel φ s 𝒫 B x B x I I s I s N x
37 34 36 bibi12d φ s 𝒫 B x B x I s x I I s s N x I s N x
38 37 ralbidva φ s 𝒫 B x B x I s x I I s x B s N x I s N x
39 29 38 bitr3d φ s 𝒫 B x V x I s x I I s x B s N x I s N x
40 7 39 syl5bb φ s 𝒫 B I I s = I s x B s N x I s N x
41 40 ralbidva φ s 𝒫 B I I s = I s s 𝒫 B x B s N x I s N x
42 ralcom s 𝒫 B x B s N x I s N x x B s 𝒫 B s N x I s N x
43 41 42 bitrdi φ s 𝒫 B I I s = I s x B s 𝒫 B s N x I s N x