Step |
Hyp |
Ref |
Expression |
1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
4 |
|
dfcleq |
⊢ ( ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ) |
5 |
|
eqcom |
⊢ ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) = ( 𝐼 ‘ 𝑠 ) ↔ ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) |
6 |
|
ralv |
⊢ ( ∀ 𝑥 ∈ V ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ) |
7 |
4 5 6
|
3bitr4i |
⊢ ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) = ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑥 ∈ V ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ) |
8 |
|
ssv |
⊢ 𝐵 ⊆ V |
9 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐵 ⊆ V ) |
10 |
|
vex |
⊢ 𝑥 ∈ V |
11 |
|
eldif |
⊢ ( 𝑥 ∈ ( V ∖ 𝐵 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
12 |
10 11
|
mpbiran |
⊢ ( 𝑥 ∈ ( V ∖ 𝐵 ) ↔ ¬ 𝑥 ∈ 𝐵 ) |
13 |
1 2 3
|
ntrneiiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
14 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
16 |
15
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ 𝑠 ) ∈ 𝒫 𝐵 ) |
17 |
16
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ 𝑠 ) ⊆ 𝐵 ) |
18 |
17
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ 𝐵 ) ) |
19 |
18
|
con3dimp |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) |
20 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
21 |
20 16
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ∈ 𝒫 𝐵 ) |
22 |
21
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ⊆ 𝐵 ) |
23 |
22
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) → 𝑥 ∈ 𝐵 ) ) |
24 |
23
|
con3dimp |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) |
25 |
19 24
|
2falsed |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ) |
26 |
25
|
ex |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ¬ 𝑥 ∈ 𝐵 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ) ) |
27 |
12 26
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ ( V ∖ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ) ) |
28 |
27
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ∀ 𝑥 ∈ ( V ∖ 𝐵 ) ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ) |
29 |
9 28
|
raldifeq |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ↔ ∀ 𝑥 ∈ V ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ) ) |
30 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐼 𝐹 𝑁 ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐼 𝐹 𝑁 ) |
32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
33 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
34 |
1 2 31 32 33
|
ntrneiel |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
35 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑠 ) ∈ 𝒫 𝐵 ) |
36 |
1 2 31 32 35
|
ntrneiel |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ↔ ( 𝐼 ‘ 𝑠 ) ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
37 |
34 36
|
bibi12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ↔ ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ↔ ( 𝐼 ‘ 𝑠 ) ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
38 |
37
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ↔ ( 𝐼 ‘ 𝑠 ) ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
39 |
29 38
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ∀ 𝑥 ∈ V ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑥 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ↔ ( 𝐼 ‘ 𝑠 ) ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
40 |
7 39
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) = ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ↔ ( 𝐼 ‘ 𝑠 ) ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
41 |
40
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) = ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑥 ∈ 𝐵 ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ↔ ( 𝐼 ‘ 𝑠 ) ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
42 |
|
ralcom |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑥 ∈ 𝐵 ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ↔ ( 𝐼 ‘ 𝑠 ) ∈ ( 𝑁 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ↔ ( 𝐼 ‘ 𝑠 ) ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
43 |
41 42
|
bitrdi |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) = ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ↔ ( 𝐼 ‘ 𝑠 ) ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |