Metamath Proof Explorer


Theorem ntrneik4

Description: Idempotence of the interior function is equivalent to stating a set, s , is a neighborhood of a point, x is equivalent to there existing a special neighborhood, u , of x such that a point is an element of the special neighborhood if and only if s is also a neighborhood of the point. (Contributed by RP, 11-Jul-2021)

Ref Expression
Hypotheses ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
Assertion ntrneik4 ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝐼𝑠 ) ) = ( 𝐼𝑠 ) ↔ ∀ 𝑥𝐵𝑠 ∈ 𝒫 𝐵 ( 𝑠 ∈ ( 𝑁𝑥 ) ↔ ∃ 𝑢 ∈ ( 𝑁𝑥 ) ∀ 𝑦𝐵 ( 𝑦𝑢𝑠 ∈ ( 𝑁𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
3 ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
4 1 2 3 ntrneik4w ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝐼𝑠 ) ) = ( 𝐼𝑠 ) ↔ ∀ 𝑥𝐵𝑠 ∈ 𝒫 𝐵 ( 𝑠 ∈ ( 𝑁𝑥 ) ↔ ( 𝐼𝑠 ) ∈ ( 𝑁𝑥 ) ) ) )
5 3 ad2antrr ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐼 𝐹 𝑁 )
6 simplr ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑥𝐵 )
7 1 2 3 ntrneiiex ( 𝜑𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
8 elmapi ( 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
9 7 8 syl ( 𝜑𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
10 9 ffvelrnda ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → ( 𝐼𝑠 ) ∈ 𝒫 𝐵 )
11 10 adantlr ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐼𝑠 ) ∈ 𝒫 𝐵 )
12 1 2 5 6 11 ntrneiel ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ ( 𝐼𝑠 ) ) ↔ ( 𝐼𝑠 ) ∈ ( 𝑁𝑥 ) ) )
13 simpr ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 )
14 1 2 5 6 13 ntrneiel2 ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ ( 𝐼𝑠 ) ) ↔ ∃ 𝑢 ∈ ( 𝑁𝑥 ) ∀ 𝑦𝐵 ( 𝑦𝑢𝑠 ∈ ( 𝑁𝑦 ) ) ) )
15 12 14 bitr3d ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ( 𝐼𝑠 ) ∈ ( 𝑁𝑥 ) ↔ ∃ 𝑢 ∈ ( 𝑁𝑥 ) ∀ 𝑦𝐵 ( 𝑦𝑢𝑠 ∈ ( 𝑁𝑦 ) ) ) )
16 15 bibi2d ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ( 𝑠 ∈ ( 𝑁𝑥 ) ↔ ( 𝐼𝑠 ) ∈ ( 𝑁𝑥 ) ) ↔ ( 𝑠 ∈ ( 𝑁𝑥 ) ↔ ∃ 𝑢 ∈ ( 𝑁𝑥 ) ∀ 𝑦𝐵 ( 𝑦𝑢𝑠 ∈ ( 𝑁𝑦 ) ) ) ) )
17 16 ralbidva ( ( 𝜑𝑥𝐵 ) → ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝑠 ∈ ( 𝑁𝑥 ) ↔ ( 𝐼𝑠 ) ∈ ( 𝑁𝑥 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝑠 ∈ ( 𝑁𝑥 ) ↔ ∃ 𝑢 ∈ ( 𝑁𝑥 ) ∀ 𝑦𝐵 ( 𝑦𝑢𝑠 ∈ ( 𝑁𝑦 ) ) ) ) )
18 17 ralbidva ( 𝜑 → ( ∀ 𝑥𝐵𝑠 ∈ 𝒫 𝐵 ( 𝑠 ∈ ( 𝑁𝑥 ) ↔ ( 𝐼𝑠 ) ∈ ( 𝑁𝑥 ) ) ↔ ∀ 𝑥𝐵𝑠 ∈ 𝒫 𝐵 ( 𝑠 ∈ ( 𝑁𝑥 ) ↔ ∃ 𝑢 ∈ ( 𝑁𝑥 ) ∀ 𝑦𝐵 ( 𝑦𝑢𝑠 ∈ ( 𝑁𝑦 ) ) ) ) )
19 4 18 bitrd ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝐼𝑠 ) ) = ( 𝐼𝑠 ) ↔ ∀ 𝑥𝐵𝑠 ∈ 𝒫 𝐵 ( 𝑠 ∈ ( 𝑁𝑥 ) ↔ ∃ 𝑢 ∈ ( 𝑁𝑥 ) ∀ 𝑦𝐵 ( 𝑦𝑢𝑠 ∈ ( 𝑁𝑦 ) ) ) ) )