Metamath Proof Explorer


Theorem ntrneik4

Description: Idempotence of the interior function is equivalent to stating a set, s , is a neighborhood of a point, x is equivalent to there existing a special neighborhood, u , of x such that a point is an element of the special neighborhood if and only if s is also a neighborhood of the point. (Contributed by RP, 11-Jul-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
Assertion ntrneik4 φs𝒫BIIs=IsxBs𝒫BsNxuNxyByusNy

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 1 2 3 ntrneik4w φs𝒫BIIs=IsxBs𝒫BsNxIsNx
5 3 ad2antrr φxBs𝒫BIFN
6 simplr φxBs𝒫BxB
7 1 2 3 ntrneiiex φI𝒫B𝒫B
8 elmapi I𝒫B𝒫BI:𝒫B𝒫B
9 7 8 syl φI:𝒫B𝒫B
10 9 ffvelcdmda φs𝒫BIs𝒫B
11 10 adantlr φxBs𝒫BIs𝒫B
12 1 2 5 6 11 ntrneiel φxBs𝒫BxIIsIsNx
13 simpr φxBs𝒫Bs𝒫B
14 1 2 5 6 13 ntrneiel2 φxBs𝒫BxIIsuNxyByusNy
15 12 14 bitr3d φxBs𝒫BIsNxuNxyByusNy
16 15 bibi2d φxBs𝒫BsNxIsNxsNxuNxyByusNy
17 16 ralbidva φxBs𝒫BsNxIsNxs𝒫BsNxuNxyByusNy
18 17 ralbidva φxBs𝒫BsNxIsNxxBs𝒫BsNxuNxyByusNy
19 4 18 bitrd φs𝒫BIIs=IsxBs𝒫BsNxuNxyByusNy