Metamath Proof Explorer


Theorem numdensq

Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion numdensq AnumerA2=numerA2denomA2=denomA2

Proof

Step Hyp Ref Expression
1 qnumdencoprm AnumerAgcddenomA=1
2 1 oveq1d AnumerAgcddenomA2=12
3 qnumcl AnumerA
4 qdencl AdenomA
5 4 nnzd AdenomA
6 zgcdsq numerAdenomAnumerAgcddenomA2=numerA2gcddenomA2
7 3 5 6 syl2anc AnumerAgcddenomA2=numerA2gcddenomA2
8 sq1 12=1
9 8 a1i A12=1
10 2 7 9 3eqtr3d AnumerA2gcddenomA2=1
11 qeqnumdivden AA=numerAdenomA
12 11 oveq1d AA2=numerAdenomA2
13 3 zcnd AnumerA
14 4 nncnd AdenomA
15 4 nnne0d AdenomA0
16 13 14 15 sqdivd AnumerAdenomA2=numerA2denomA2
17 12 16 eqtrd AA2=numerA2denomA2
18 qsqcl AA2
19 zsqcl numerAnumerA2
20 3 19 syl AnumerA2
21 4 nnsqcld AdenomA2
22 qnumdenbi A2numerA2denomA2numerA2gcddenomA2=1A2=numerA2denomA2numerA2=numerA2denomA2=denomA2
23 18 20 21 22 syl3anc AnumerA2gcddenomA2=1A2=numerA2denomA2numerA2=numerA2denomA2=denomA2
24 10 17 23 mpbi2and AnumerA2=numerA2denomA2=denomA2