Metamath Proof Explorer


Theorem nvi

Description: The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvi.1 X=BaseSetU
nvi.2 G=+vU
nvi.4 S=𝑠OLDU
nvi.5 Z=0vecU
nvi.6 N=normCVU
Assertion nvi UNrmCVecGSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+Ny

Proof

Step Hyp Ref Expression
1 nvi.1 X=BaseSetU
2 nvi.2 G=+vU
3 nvi.4 S=𝑠OLDU
4 nvi.5 Z=0vecU
5 nvi.6 N=normCVU
6 eqid 1stU=1stU
7 6 5 nvop2 UNrmCVecU=1stUN
8 6 2 3 nvvop UNrmCVec1stU=GS
9 8 opeq1d UNrmCVec1stUN=GSN
10 7 9 eqtrd UNrmCVecU=GSN
11 id UNrmCVecUNrmCVec
12 10 11 eqeltrrd UNrmCVecGSNNrmCVec
13 1 2 bafval X=ranG
14 eqid GIdG=GIdG
15 13 14 isnv GSNNrmCVecGSCVecOLDN:XxXNx=0x=GIdGyNySx=yNxyXNxGyNx+Ny
16 12 15 sylib UNrmCVecGSCVecOLDN:XxXNx=0x=GIdGyNySx=yNxyXNxGyNx+Ny
17 2 4 0vfval UNrmCVecZ=GIdG
18 17 eqeq2d UNrmCVecx=Zx=GIdG
19 18 imbi2d UNrmCVecNx=0x=ZNx=0x=GIdG
20 19 3anbi1d UNrmCVecNx=0x=ZyNySx=yNxyXNxGyNx+NyNx=0x=GIdGyNySx=yNxyXNxGyNx+Ny
21 20 ralbidv UNrmCVecxXNx=0x=ZyNySx=yNxyXNxGyNx+NyxXNx=0x=GIdGyNySx=yNxyXNxGyNx+Ny
22 21 3anbi3d UNrmCVecGSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+NyGSCVecOLDN:XxXNx=0x=GIdGyNySx=yNxyXNxGyNx+Ny
23 16 22 mpbird UNrmCVecGSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+Ny