Metamath Proof Explorer


Theorem nvmfval

Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvmval.1 X=BaseSetU
nvmval.2 G=+vU
nvmval.4 S=𝑠OLDU
nvmval.3 M=-vU
Assertion nvmfval UNrmCVecM=xX,yXxG-1Sy

Proof

Step Hyp Ref Expression
1 nvmval.1 X=BaseSetU
2 nvmval.2 G=+vU
3 nvmval.4 S=𝑠OLDU
4 nvmval.3 M=-vU
5 2 nvgrp UNrmCVecGGrpOp
6 1 2 bafval X=ranG
7 eqid invG=invG
8 2 4 vsfval M=/gG
9 6 7 8 grpodivfval GGrpOpM=xX,yXxGinvGy
10 5 9 syl UNrmCVecM=xX,yXxGinvGy
11 1 2 3 7 nvinv UNrmCVecyX-1Sy=invGy
12 11 3adant2 UNrmCVecxXyX-1Sy=invGy
13 12 oveq2d UNrmCVecxXyXxG-1Sy=xGinvGy
14 13 mpoeq3dva UNrmCVecxX,yXxG-1Sy=xX,yXxGinvGy
15 10 14 eqtr4d UNrmCVecM=xX,yXxG-1Sy