Metamath Proof Explorer


Theorem nvtri

Description: Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvtri.1 X=BaseSetU
nvtri.2 G=+vU
nvtri.6 N=normCVU
Assertion nvtri UNrmCVecAXBXNAGBNA+NB

Proof

Step Hyp Ref Expression
1 nvtri.1 X=BaseSetU
2 nvtri.2 G=+vU
3 nvtri.6 N=normCVU
4 eqid 𝑠OLDU=𝑠OLDU
5 4 smfval 𝑠OLDU=2nd1stU
6 5 eqcomi 2nd1stU=𝑠OLDU
7 eqid 0vecU=0vecU
8 1 2 6 7 3 nvi UNrmCVecG2nd1stUCVecOLDN:XxXNx=0x=0vecUyNy2nd1stUx=yNxyXNxGyNx+Ny
9 8 simp3d UNrmCVecxXNx=0x=0vecUyNy2nd1stUx=yNxyXNxGyNx+Ny
10 simp3 Nx=0x=0vecUyNy2nd1stUx=yNxyXNxGyNx+NyyXNxGyNx+Ny
11 10 ralimi xXNx=0x=0vecUyNy2nd1stUx=yNxyXNxGyNx+NyxXyXNxGyNx+Ny
12 9 11 syl UNrmCVecxXyXNxGyNx+Ny
13 fvoveq1 x=ANxGy=NAGy
14 fveq2 x=ANx=NA
15 14 oveq1d x=ANx+Ny=NA+Ny
16 13 15 breq12d x=ANxGyNx+NyNAGyNA+Ny
17 oveq2 y=BAGy=AGB
18 17 fveq2d y=BNAGy=NAGB
19 fveq2 y=BNy=NB
20 19 oveq2d y=BNA+Ny=NA+NB
21 18 20 breq12d y=BNAGyNA+NyNAGBNA+NB
22 16 21 rspc2v AXBXxXyXNxGyNx+NyNAGBNA+NB
23 12 22 syl5 AXBXUNrmCVecNAGBNA+NB
24 23 3impia AXBXUNrmCVecNAGBNA+NB
25 24 3comr UNrmCVecAXBXNAGBNA+NB