Metamath Proof Explorer


Theorem oasubex

Description: While subtraction can't be a binary operation on ordinals, for any pair of ordinals there exists an ordinal that can be added to the lessor (or equal) one which will sum to the greater. Theorem 2.19 of Schloeder p. 6. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oasubex AOnBOnBAcOncAB+𝑜c=A

Proof

Step Hyp Ref Expression
1 simp2 AOnBOnBABOn
2 simp1 AOnBOnBAAOn
3 simp3 AOnBOnBABA
4 oawordex BOnAOnBAcOnB+𝑜c=A
5 4 biimpa BOnAOnBAcOnB+𝑜c=A
6 1 2 3 5 syl21anc AOnBOnBAcOnB+𝑜c=A
7 simpr AOnBOnBAcOnB+𝑜c=AB+𝑜c=A
8 simpl1 AOnBOnBAcOnAOn
9 simpl2 AOnBOnBAcOnBOn
10 oaword2 AOnBOnAB+𝑜A
11 8 9 10 syl2anc AOnBOnBAcOnAB+𝑜A
12 11 adantr AOnBOnBAcOnB+𝑜c=AAB+𝑜A
13 7 12 eqsstrd AOnBOnBAcOnB+𝑜c=AB+𝑜cB+𝑜A
14 simpr AOnBOnBAcOncOn
15 oaword cOnAOnBOncAB+𝑜cB+𝑜A
16 14 8 9 15 syl3anc AOnBOnBAcOncAB+𝑜cB+𝑜A
17 16 adantr AOnBOnBAcOnB+𝑜c=AcAB+𝑜cB+𝑜A
18 13 17 mpbird AOnBOnBAcOnB+𝑜c=AcA
19 18 ex AOnBOnBAcOnB+𝑜c=AcA
20 19 ancrd AOnBOnBAcOnB+𝑜c=AcAB+𝑜c=A
21 20 reximdva AOnBOnBAcOnB+𝑜c=AcOncAB+𝑜c=A
22 6 21 mpd AOnBOnBAcOncAB+𝑜c=A