Metamath Proof Explorer


Theorem oawordex2

Description: If C is between A (inclusive) and ( A +o B ) (exclusive), there is an ordinal which equals C when summed to A . This is a slightly different statement than oawordex or oawordeu . (Contributed by RP, 7-Jan-2025)

Ref Expression
Assertion oawordex2 AOnBOnACCA+𝑜BxBA+𝑜x=C

Proof

Step Hyp Ref Expression
1 simprl AOnBOnACCA+𝑜BAC
2 simpll AOnBOnACCA+𝑜BAOn
3 oacl AOnBOnA+𝑜BOn
4 simpr ACCA+𝑜BCA+𝑜B
5 onelon A+𝑜BOnCA+𝑜BCOn
6 3 4 5 syl2an AOnBOnACCA+𝑜BCOn
7 oawordex AOnCOnACxOnA+𝑜x=C
8 2 6 7 syl2anc AOnBOnACCA+𝑜BACxOnA+𝑜x=C
9 1 8 mpbid AOnBOnACCA+𝑜BxOnA+𝑜x=C
10 simprr AOnBOnACCA+𝑜BxOnA+𝑜x=CA+𝑜x=C
11 simprr AOnBOnACCA+𝑜BCA+𝑜B
12 11 adantr AOnBOnACCA+𝑜BxOnA+𝑜x=CCA+𝑜B
13 10 12 eqeltrd AOnBOnACCA+𝑜BxOnA+𝑜x=CA+𝑜xA+𝑜B
14 simprl AOnBOnACCA+𝑜BxOnA+𝑜x=CxOn
15 simpllr AOnBOnACCA+𝑜BxOnA+𝑜x=CBOn
16 2 adantr AOnBOnACCA+𝑜BxOnA+𝑜x=CAOn
17 oaord xOnBOnAOnxBA+𝑜xA+𝑜B
18 14 15 16 17 syl3anc AOnBOnACCA+𝑜BxOnA+𝑜x=CxBA+𝑜xA+𝑜B
19 13 18 mpbird AOnBOnACCA+𝑜BxOnA+𝑜x=CxB
20 9 19 10 reximssdv AOnBOnACCA+𝑜BxBA+𝑜x=C