Description: Closure of complement of Hilbert subset. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 8-Aug-2000) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | occl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocsh | |
|
2 | ax-hcompl | |
|
3 | vex | |
|
4 | vex | |
|
5 | 3 4 | breldm | |
6 | 5 | rexlimivw | |
7 | 2 6 | syl | |
8 | 7 | ad2antlr | |
9 | hlimf | |
|
10 | 9 | ffvelcdmi | |
11 | 8 10 | syl | |
12 | simplll | |
|
13 | simpllr | |
|
14 | simplr | |
|
15 | simpr | |
|
16 | 12 13 14 15 | occllem | |
17 | 16 | ralrimiva | |
18 | ocel | |
|
19 | 18 | ad2antrr | |
20 | 11 17 19 | mpbir2and | |
21 | ffun | |
|
22 | funfvbrb | |
|
23 | 9 21 22 | mp2b | |
24 | 8 23 | sylib | |
25 | breq2 | |
|
26 | 25 | rspcev | |
27 | 20 24 26 | syl2anc | |
28 | 27 | ex | |
29 | 28 | ralrimiva | |
30 | isch3 | |
|
31 | 1 29 30 | sylanbrc | |