Metamath Proof Explorer


Theorem occl

Description: Closure of complement of Hilbert subset. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 8-Aug-2000) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion occl AAC

Proof

Step Hyp Ref Expression
1 ocsh AAS
2 ax-hcompl fCauchyxfvx
3 vex fV
4 vex xV
5 3 4 breldm fvxfdomv
6 5 rexlimivw xfvxfdomv
7 2 6 syl fCauchyfdomv
8 7 ad2antlr AfCauchyf:Afdomv
9 hlimf v:domv
10 9 ffvelcdmi fdomvvf
11 8 10 syl AfCauchyf:Avf
12 simplll AfCauchyf:AxAA
13 simpllr AfCauchyf:AxAfCauchy
14 simplr AfCauchyf:AxAf:A
15 simpr AfCauchyf:AxAxA
16 12 13 14 15 occllem AfCauchyf:AxAvfihx=0
17 16 ralrimiva AfCauchyf:AxAvfihx=0
18 ocel AvfAvfxAvfihx=0
19 18 ad2antrr AfCauchyf:AvfAvfxAvfihx=0
20 11 17 19 mpbir2and AfCauchyf:AvfA
21 ffun v:domvFunv
22 funfvbrb Funvfdomvfvvf
23 9 21 22 mp2b fdomvfvvf
24 8 23 sylib AfCauchyf:Afvvf
25 breq2 x=vffvxfvvf
26 25 rspcev vfAfvvfxAfvx
27 20 24 26 syl2anc AfCauchyf:AxAfvx
28 27 ex AfCauchyf:AxAfvx
29 28 ralrimiva AfCauchyf:AxAfvx
30 isch3 ACASfCauchyf:AxAfvx
31 1 29 30 sylanbrc AAC