Metamath Proof Explorer


Theorem ocvfval

Description: The orthocomplement operation. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvfval.v V=BaseW
ocvfval.i ,˙=𝑖W
ocvfval.f F=ScalarW
ocvfval.z 0˙=0F
ocvfval.o ˙=ocvW
Assertion ocvfval WX˙=s𝒫VxV|ysx,˙y=0˙

Proof

Step Hyp Ref Expression
1 ocvfval.v V=BaseW
2 ocvfval.i ,˙=𝑖W
3 ocvfval.f F=ScalarW
4 ocvfval.z 0˙=0F
5 ocvfval.o ˙=ocvW
6 elex WXWV
7 fveq2 h=WBaseh=BaseW
8 7 1 eqtr4di h=WBaseh=V
9 8 pweqd h=W𝒫Baseh=𝒫V
10 fveq2 h=W𝑖h=𝑖W
11 10 2 eqtr4di h=W𝑖h=,˙
12 11 oveqd h=Wx𝑖hy=x,˙y
13 fveq2 h=WScalarh=ScalarW
14 13 3 eqtr4di h=WScalarh=F
15 14 fveq2d h=W0Scalarh=0F
16 15 4 eqtr4di h=W0Scalarh=0˙
17 12 16 eqeq12d h=Wx𝑖hy=0Scalarhx,˙y=0˙
18 17 ralbidv h=Wysx𝑖hy=0Scalarhysx,˙y=0˙
19 8 18 rabeqbidv h=WxBaseh|ysx𝑖hy=0Scalarh=xV|ysx,˙y=0˙
20 9 19 mpteq12dv h=Ws𝒫BasehxBaseh|ysx𝑖hy=0Scalarh=s𝒫VxV|ysx,˙y=0˙
21 df-ocv ocv=hVs𝒫BasehxBaseh|ysx𝑖hy=0Scalarh
22 eqid s𝒫VxV|ysx,˙y=0˙=s𝒫VxV|ysx,˙y=0˙
23 1 fvexi VV
24 ssrab2 xV|ysx,˙y=0˙V
25 23 24 elpwi2 xV|ysx,˙y=0˙𝒫V
26 25 a1i s𝒫VxV|ysx,˙y=0˙𝒫V
27 22 26 fmpti s𝒫VxV|ysx,˙y=0˙:𝒫V𝒫V
28 23 pwex 𝒫VV
29 fex2 s𝒫VxV|ysx,˙y=0˙:𝒫V𝒫V𝒫VV𝒫VVs𝒫VxV|ysx,˙y=0˙V
30 27 28 28 29 mp3an s𝒫VxV|ysx,˙y=0˙V
31 20 21 30 fvmpt WVocvW=s𝒫VxV|ysx,˙y=0˙
32 6 31 syl WXocvW=s𝒫VxV|ysx,˙y=0˙
33 5 32 eqtrid WX˙=s𝒫VxV|ysx,˙y=0˙