Metamath Proof Explorer


Theorem oddprmge3

Description: An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 20-Aug-2021)

Ref Expression
Assertion oddprmge3 P2P3

Proof

Step Hyp Ref Expression
1 eldifi P2P
2 oddprmgt2 P22<P
3 3z 3
4 3 a1i P2<P3
5 prmz PP
6 5 adantr P2<PP
7 df-3 3=2+1
8 2z 2
9 zltp1le 2P2<P2+1P
10 8 5 9 sylancr P2<P2+1P
11 10 biimpa P2<P2+1P
12 7 11 eqbrtrid P2<P3P
13 4 6 12 3jca P2<P3P3P
14 1 2 13 syl2anc P23P3P
15 eluz2 P33P3P
16 14 15 sylibr P2P3