Metamath Proof Explorer


Theorem oddprmgt2

Description: An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021)

Ref Expression
Assertion oddprmgt2 P22<P

Proof

Step Hyp Ref Expression
1 eldifsn P2PP2
2 prmuz2 PP2
3 eluz2 P22P2P
4 zre 22
5 zre PP
6 ltlen 2P2<P2PP2
7 4 5 6 syl2an 2P2<P2PP2
8 7 biimprd 2P2PP22<P
9 8 exp4b 2P2PP22<P
10 9 3imp 2P2PP22<P
11 3 10 sylbi P2P22<P
12 2 11 syl PP22<P
13 12 imp PP22<P
14 1 13 sylbi P22<P