Metamath Proof Explorer


Theorem odf

Description: Functionality of the group element order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 5-Oct-2020)

Ref Expression
Hypotheses odcl.1 X=BaseG
odcl.2 O=odG
Assertion odf O:X0

Proof

Step Hyp Ref Expression
1 odcl.1 X=BaseG
2 odcl.2 O=odG
3 c0ex 0V
4 ltso <Or
5 4 infex supw<V
6 3 5 ifex ifw=0supw<V
7 6 csbex z|zGy=0G/wifw=0supw<V
8 eqid G=G
9 eqid 0G=0G
10 1 8 9 2 odfval O=yXz|zGy=0G/wifw=0supw<
11 7 10 fnmpti OFnX
12 1 2 odcl xXOx0
13 12 rgen xXOx0
14 ffnfv O:X0OFnXxXOx0
15 11 13 14 mpbir2an O:X0