Metamath Proof Explorer


Theorem odlem1

Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015) (Revised by AV, 5-Oct-2020)

Ref Expression
Hypotheses odval.1 X=BaseG
odval.2 ·˙=G
odval.3 0˙=0G
odval.4 O=odG
odval.i I=y|y·˙A=0˙
Assertion odlem1 AXOA=0I=OAI

Proof

Step Hyp Ref Expression
1 odval.1 X=BaseG
2 odval.2 ·˙=G
3 odval.3 0˙=0G
4 odval.4 O=odG
5 odval.i I=y|y·˙A=0˙
6 1 2 3 4 5 odval AXOA=ifI=0supI<
7 eqeq2 0=ifI=0supI<OA=0OA=ifI=0supI<
8 7 imbi1d 0=ifI=0supI<OA=0OA=0I=OAIOA=ifI=0supI<OA=0I=OAI
9 eqeq2 supI<=ifI=0supI<OA=supI<OA=ifI=0supI<
10 9 imbi1d supI<=ifI=0supI<OA=supI<OA=0I=OAIOA=ifI=0supI<OA=0I=OAI
11 orc OA=0I=OA=0I=OAI
12 11 expcom I=OA=0OA=0I=OAI
13 12 adantl AXI=OA=0OA=0I=OAI
14 ssrab2 y|y·˙A=0˙
15 nnuz =1
16 15 eqcomi 1=
17 14 5 16 3sstr4i I1
18 neqne ¬I=I
19 18 adantl AX¬I=I
20 infssuzcl I1IsupI<I
21 17 19 20 sylancr AX¬I=supI<I
22 eleq1a supI<IOA=supI<OAI
23 21 22 syl AX¬I=OA=supI<OAI
24 olc OAIOA=0I=OAI
25 23 24 syl6 AX¬I=OA=supI<OA=0I=OAI
26 8 10 13 25 ifbothda AXOA=ifI=0supI<OA=0I=OAI
27 6 26 mpd AXOA=0I=OAI