Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015) (Revised by AV, 5-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odval.1 | |
|
odval.2 | |
||
odval.3 | |
||
odval.4 | |
||
odval.i | |
||
Assertion | odlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odval.1 | |
|
2 | odval.2 | |
|
3 | odval.3 | |
|
4 | odval.4 | |
|
5 | odval.i | |
|
6 | 1 2 3 4 5 | odval | |
7 | eqeq2 | |
|
8 | 7 | imbi1d | |
9 | eqeq2 | |
|
10 | 9 | imbi1d | |
11 | orc | |
|
12 | 11 | expcom | |
13 | 12 | adantl | |
14 | ssrab2 | |
|
15 | nnuz | |
|
16 | 15 | eqcomi | |
17 | 14 5 16 | 3sstr4i | |
18 | neqne | |
|
19 | 18 | adantl | |
20 | infssuzcl | |
|
21 | 17 19 20 | sylancr | |
22 | eleq1a | |
|
23 | 21 22 | syl | |
24 | olc | |
|
25 | 23 24 | syl6 | |
26 | 8 10 13 25 | ifbothda | |
27 | 6 26 | mpd | |