Description: A cyclic subgroup of size ( OA ) has ( phi( OA ) ) generators. (Contributed by Stefan O'Rear, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odhash.x | |
|
odhash.o | |
||
odhash.k | |
||
Assertion | odngen | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odhash.x | |
|
2 | odhash.o | |
|
3 | odhash.k | |
|
4 | eqid | |
|
5 | 4 | mptpreima | |
6 | 5 | fveq2i | |
7 | eqid | |
|
8 | 1 7 2 3 | odf1o2 | |
9 | f1ocnv | |
|
10 | f1of1 | |
|
11 | 8 9 10 | 3syl | |
12 | ssrab2 | |
|
13 | fvex | |
|
14 | 13 | rabex | |
15 | 14 | f1imaen | |
16 | hasheni | |
|
17 | 15 16 | syl | |
18 | 11 12 17 | sylancl | |
19 | simpl1 | |
|
20 | simpl2 | |
|
21 | elfzoelz | |
|
22 | 21 | adantl | |
23 | 1 7 3 | cycsubg2cl | |
24 | 19 20 22 23 | syl3anc | |
25 | fveqeq2 | |
|
26 | 25 | elrab3 | |
27 | 24 26 | syl | |
28 | simpl3 | |
|
29 | 1 2 7 | odmulgeq | |
30 | 19 20 22 28 29 | syl31anc | |
31 | 27 30 | bitrd | |
32 | 31 | rabbidva | |
33 | 32 | fveq2d | |
34 | dfphi2 | |
|
35 | 34 | 3ad2ant3 | |
36 | 33 35 | eqtr4d | |
37 | 6 18 36 | 3eqtr3a | |