Metamath Proof Explorer


Theorem odngen

Description: A cyclic subgroup of size ( OA ) has ( phi( OA ) ) generators. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses odhash.x X=BaseG
odhash.o O=odG
odhash.k K=mrClsSubGrpG
Assertion odngen GGrpAXOAxKA|Ox=OA=ϕOA

Proof

Step Hyp Ref Expression
1 odhash.x X=BaseG
2 odhash.o O=odG
3 odhash.k K=mrClsSubGrpG
4 eqid y0..^OAyGA=y0..^OAyGA
5 4 mptpreima y0..^OAyGA-1xKA|Ox=OA=y0..^OA|yGAxKA|Ox=OA
6 5 fveq2i y0..^OAyGA-1xKA|Ox=OA=y0..^OA|yGAxKA|Ox=OA
7 eqid G=G
8 1 7 2 3 odf1o2 GGrpAXOAy0..^OAyGA:0..^OA1-1 ontoKA
9 f1ocnv y0..^OAyGA:0..^OA1-1 ontoKAy0..^OAyGA-1:KA1-1 onto0..^OA
10 f1of1 y0..^OAyGA-1:KA1-1 onto0..^OAy0..^OAyGA-1:KA1-10..^OA
11 8 9 10 3syl GGrpAXOAy0..^OAyGA-1:KA1-10..^OA
12 ssrab2 xKA|Ox=OAKA
13 fvex KAV
14 13 rabex xKA|Ox=OAV
15 14 f1imaen y0..^OAyGA-1:KA1-10..^OAxKA|Ox=OAKAy0..^OAyGA-1xKA|Ox=OAxKA|Ox=OA
16 hasheni y0..^OAyGA-1xKA|Ox=OAxKA|Ox=OAy0..^OAyGA-1xKA|Ox=OA=xKA|Ox=OA
17 15 16 syl y0..^OAyGA-1:KA1-10..^OAxKA|Ox=OAKAy0..^OAyGA-1xKA|Ox=OA=xKA|Ox=OA
18 11 12 17 sylancl GGrpAXOAy0..^OAyGA-1xKA|Ox=OA=xKA|Ox=OA
19 simpl1 GGrpAXOAy0..^OAGGrp
20 simpl2 GGrpAXOAy0..^OAAX
21 elfzoelz y0..^OAy
22 21 adantl GGrpAXOAy0..^OAy
23 1 7 3 cycsubg2cl GGrpAXyyGAKA
24 19 20 22 23 syl3anc GGrpAXOAy0..^OAyGAKA
25 fveqeq2 x=yGAOx=OAOyGA=OA
26 25 elrab3 yGAKAyGAxKA|Ox=OAOyGA=OA
27 24 26 syl GGrpAXOAy0..^OAyGAxKA|Ox=OAOyGA=OA
28 simpl3 GGrpAXOAy0..^OAOA
29 1 2 7 odmulgeq GGrpAXyOAOyGA=OAygcdOA=1
30 19 20 22 28 29 syl31anc GGrpAXOAy0..^OAOyGA=OAygcdOA=1
31 27 30 bitrd GGrpAXOAy0..^OAyGAxKA|Ox=OAygcdOA=1
32 31 rabbidva GGrpAXOAy0..^OA|yGAxKA|Ox=OA=y0..^OA|ygcdOA=1
33 32 fveq2d GGrpAXOAy0..^OA|yGAxKA|Ox=OA=y0..^OA|ygcdOA=1
34 dfphi2 OAϕOA=y0..^OA|ygcdOA=1
35 34 3ad2ant3 GGrpAXOAϕOA=y0..^OA|ygcdOA=1
36 33 35 eqtr4d GGrpAXOAy0..^OA|yGAxKA|Ox=OA=ϕOA
37 6 18 36 3eqtr3a GGrpAXOAxKA|Ox=OA=ϕOA