Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of Schloeder p. 10. See oewordi . (Contributed by RP, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oege1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | 0ss | |
|
3 | 1 2 | eqsstrdi | |
4 | 3 | a1i | |
5 | simpl1 | |
|
6 | oe1 | |
|
7 | 5 6 | syl | |
8 | 1on | |
|
9 | 8 | a1i | |
10 | simp2 | |
|
11 | simp1 | |
|
12 | 9 10 11 | 3jca | |
13 | 12 | anim1i | |
14 | eloni | |
|
15 | 10 14 | syl | |
16 | simp3 | |
|
17 | ordge1n0 | |
|
18 | 17 | biimprd | |
19 | 15 16 18 | sylc | |
20 | 19 | adantr | |
21 | oewordi | |
|
22 | 13 20 21 | sylc | |
23 | 7 22 | eqsstrrd | |
24 | 23 | ex | |
25 | on0eqel | |
|
26 | 11 25 | syl | |
27 | 4 24 26 | mpjaod | |