Metamath Proof Explorer


Theorem oege1

Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of Schloeder p. 10. See oewordi . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oege1 AOnBOnBAA𝑜B

Proof

Step Hyp Ref Expression
1 id A=A=
2 0ss A𝑜B
3 1 2 eqsstrdi A=AA𝑜B
4 3 a1i AOnBOnBA=AA𝑜B
5 simpl1 AOnBOnBAAOn
6 oe1 AOnA𝑜1𝑜=A
7 5 6 syl AOnBOnBAA𝑜1𝑜=A
8 1on 1𝑜On
9 8 a1i AOnBOnB1𝑜On
10 simp2 AOnBOnBBOn
11 simp1 AOnBOnBAOn
12 9 10 11 3jca AOnBOnB1𝑜OnBOnAOn
13 12 anim1i AOnBOnBA1𝑜OnBOnAOnA
14 eloni BOnOrdB
15 10 14 syl AOnBOnBOrdB
16 simp3 AOnBOnBB
17 ordge1n0 OrdB1𝑜BB
18 17 biimprd OrdBB1𝑜B
19 15 16 18 sylc AOnBOnB1𝑜B
20 19 adantr AOnBOnBA1𝑜B
21 oewordi 1𝑜OnBOnAOnA1𝑜BA𝑜1𝑜A𝑜B
22 13 20 21 sylc AOnBOnBAA𝑜1𝑜A𝑜B
23 7 22 eqsstrrd AOnBOnBAAA𝑜B
24 23 ex AOnBOnBAAA𝑜B
25 on0eqel AOnA=A
26 11 25 syl AOnBOnBA=A
27 4 24 26 mpjaod AOnBOnBAA𝑜B