Metamath Proof Explorer


Theorem ofcfeqd2

Description: Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfeqd2.1 φxAFxB
ofcfeqd2.2 φyByRC=yPC
ofcfeqd2.3 φFFnA
ofcfeqd2.4 φAV
ofcfeqd2.5 φCW
Assertion ofcfeqd2 φFfcRC=FfcPC

Proof

Step Hyp Ref Expression
1 ofcfeqd2.1 φxAFxB
2 ofcfeqd2.2 φyByRC=yPC
3 ofcfeqd2.3 φFFnA
4 ofcfeqd2.4 φAV
5 ofcfeqd2.5 φCW
6 oveq1 y=FxyRC=FxRC
7 oveq1 y=FxyPC=FxPC
8 6 7 eqeq12d y=FxyRC=yPCFxRC=FxPC
9 2 ralrimiva φyByRC=yPC
10 9 adantr φxAyByRC=yPC
11 8 10 1 rspcdva φxAFxRC=FxPC
12 11 mpteq2dva φxAFxRC=xAFxPC
13 eqidd φxAFx=Fx
14 3 4 5 13 ofcfval φFfcRC=xAFxRC
15 3 4 5 13 ofcfval φFfcPC=xAFxPC
16 12 14 15 3eqtr4d φFfcRC=FfcPC