Metamath Proof Explorer


Theorem ofcs1

Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018)

Ref Expression
Assertion ofcs1 ASBT⟨“A”⟩fcRB=⟨“ARB”⟩

Proof

Step Hyp Ref Expression
1 snex 0V
2 1 a1i ASBT0V
3 simpr ASBTBT
4 simpll ASBTi0AS
5 s1val AS⟨“A”⟩=0A
6 0nn0 00
7 fmptsn 00AS0A=i0A
8 6 7 mpan AS0A=i0A
9 5 8 eqtrd AS⟨“A”⟩=i0A
10 9 adantr ASBT⟨“A”⟩=i0A
11 2 3 4 10 ofcfval2 ASBT⟨“A”⟩fcRB=i0ARB
12 ovex ARBV
13 s1val ARBV⟨“ARB”⟩=0ARB
14 12 13 ax-mp ⟨“ARB”⟩=0ARB
15 fmptsn 00ARBV0ARB=i0ARB
16 6 12 15 mp2an 0ARB=i0ARB
17 14 16 eqtri ⟨“ARB”⟩=i0ARB
18 11 17 eqtr4di ASBT⟨“A”⟩fcRB=⟨“ARB”⟩