Metamath Proof Explorer


Theorem ofcval

Description: Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval.1 φ F Fn A
ofcfval.2 φ A V
ofcfval.3 φ C W
ofcval.6 φ X A F X = B
Assertion ofcval φ X A F fc R C X = B R C

Proof

Step Hyp Ref Expression
1 ofcfval.1 φ F Fn A
2 ofcfval.2 φ A V
3 ofcfval.3 φ C W
4 ofcval.6 φ X A F X = B
5 eqidd φ x A F x = F x
6 1 2 3 5 ofcfval φ F fc R C = x A F x R C
7 6 adantr φ X A F fc R C = x A F x R C
8 simpr φ X A x = X x = X
9 8 fveq2d φ X A x = X F x = F X
10 9 oveq1d φ X A x = X F x R C = F X R C
11 simpr φ X A X A
12 ovexd φ X A F X R C V
13 7 10 11 12 fvmptd φ X A F fc R C X = F X R C
14 4 oveq1d φ X A F X R C = B R C
15 13 14 eqtrd φ X A F fc R C X = B R C