Description: The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ofmulrt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 | |
|
2 | 1 | ffnd | |
3 | simp3 | |
|
4 | 3 | ffnd | |
5 | simp1 | |
|
6 | inidm | |
|
7 | eqidd | |
|
8 | eqidd | |
|
9 | 2 4 5 5 6 7 8 | ofval | |
10 | 9 | eqeq1d | |
11 | 1 | ffvelcdmda | |
12 | 3 | ffvelcdmda | |
13 | 11 12 | mul0ord | |
14 | 10 13 | bitrd | |
15 | 14 | pm5.32da | |
16 | 2 4 5 5 6 | offn | |
17 | fniniseg | |
|
18 | 16 17 | syl | |
19 | fniniseg | |
|
20 | 2 19 | syl | |
21 | fniniseg | |
|
22 | 4 21 | syl | |
23 | 20 22 | orbi12d | |
24 | elun | |
|
25 | andi | |
|
26 | 23 24 25 | 3bitr4g | |
27 | 15 18 26 | 3bitr4d | |
28 | 27 | eqrdv | |