Metamath Proof Explorer


Theorem ofmulrt

Description: The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion ofmulrt AVF:AG:AF×fG-10=F-10G-10

Proof

Step Hyp Ref Expression
1 simp2 AVF:AG:AF:A
2 1 ffnd AVF:AG:AFFnA
3 simp3 AVF:AG:AG:A
4 3 ffnd AVF:AG:AGFnA
5 simp1 AVF:AG:AAV
6 inidm AA=A
7 eqidd AVF:AG:AxAFx=Fx
8 eqidd AVF:AG:AxAGx=Gx
9 2 4 5 5 6 7 8 ofval AVF:AG:AxAF×fGx=FxGx
10 9 eqeq1d AVF:AG:AxAF×fGx=0FxGx=0
11 1 ffvelcdmda AVF:AG:AxAFx
12 3 ffvelcdmda AVF:AG:AxAGx
13 11 12 mul0ord AVF:AG:AxAFxGx=0Fx=0Gx=0
14 10 13 bitrd AVF:AG:AxAF×fGx=0Fx=0Gx=0
15 14 pm5.32da AVF:AG:AxAF×fGx=0xAFx=0Gx=0
16 2 4 5 5 6 offn AVF:AG:AF×fGFnA
17 fniniseg F×fGFnAxF×fG-10xAF×fGx=0
18 16 17 syl AVF:AG:AxF×fG-10xAF×fGx=0
19 fniniseg FFnAxF-10xAFx=0
20 2 19 syl AVF:AG:AxF-10xAFx=0
21 fniniseg GFnAxG-10xAGx=0
22 4 21 syl AVF:AG:AxG-10xAGx=0
23 20 22 orbi12d AVF:AG:AxF-10xG-10xAFx=0xAGx=0
24 elun xF-10G-10xF-10xG-10
25 andi xAFx=0Gx=0xAFx=0xAGx=0
26 23 24 25 3bitr4g AVF:AG:AxF-10G-10xAFx=0Gx=0
27 15 18 26 3bitr4d AVF:AG:AxF×fG-10xF-10G-10
28 27 eqrdv AVF:AG:AF×fG-10=F-10G-10