Metamath Proof Explorer


Theorem oieq1

Description: Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015)

Ref Expression
Assertion oieq1 R=SOrdIsoRA=OrdIsoSA

Proof

Step Hyp Ref Expression
1 weeq1 R=SRWeASWeA
2 seeq1 R=SRSeASSeA
3 1 2 anbi12d R=SRWeARSeASWeASSeA
4 breq R=SjRwjSw
5 4 ralbidv R=SjranhjRwjranhjSw
6 5 rabbidv R=SwA|jranhjRw=wA|jranhjSw
7 breq R=SuRvuSv
8 7 notbid R=S¬uRv¬uSv
9 6 8 raleqbidv R=SuwA|jranhjRw¬uRvuwA|jranhjSw¬uSv
10 6 9 riotaeqbidv R=SιvwA|jranhjRw|uwA|jranhjRw¬uRv=ιvwA|jranhjSw|uwA|jranhjSw¬uSv
11 10 mpteq2dv R=ShVιvwA|jranhjRw|uwA|jranhjRw¬uRv=hVιvwA|jranhjSw|uwA|jranhjSw¬uSv
12 recseq hVιvwA|jranhjRw|uwA|jranhjRw¬uRv=hVιvwA|jranhjSw|uwA|jranhjSw¬uSvrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRv=recshVιvwA|jranhjSw|uwA|jranhjSw¬uSv
13 11 12 syl R=SrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRv=recshVιvwA|jranhjSw|uwA|jranhjSw¬uSv
14 13 imaeq1d R=SrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvx=recshVιvwA|jranhjSw|uwA|jranhjSw¬uSvx
15 breq R=SzRtzSt
16 14 15 raleqbidv R=SzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRtzrecshVιvwA|jranhjSw|uwA|jranhjSw¬uSvxzSt
17 16 rexbidv R=StAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRttAzrecshVιvwA|jranhjSw|uwA|jranhjSw¬uSvxzSt
18 17 rabbidv R=SxOn|tAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRt=xOn|tAzrecshVιvwA|jranhjSw|uwA|jranhjSw¬uSvxzSt
19 13 18 reseq12d R=SrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxOn|tAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRt=recshVιvwA|jranhjSw|uwA|jranhjSw¬uSvxOn|tAzrecshVιvwA|jranhjSw|uwA|jranhjSw¬uSvxzSt
20 3 19 ifbieq1d R=SifRWeARSeArecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxOn|tAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRt=ifSWeASSeArecshVιvwA|jranhjSw|uwA|jranhjSw¬uSvxOn|tAzrecshVιvwA|jranhjSw|uwA|jranhjSw¬uSvxzSt
21 df-oi OrdIsoRA=ifRWeARSeArecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxOn|tAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRt
22 df-oi OrdIsoSA=ifSWeASSeArecshVιvwA|jranhjSw|uwA|jranhjSw¬uSvxOn|tAzrecshVιvwA|jranhjSw|uwA|jranhjSw¬uSvxzSt
23 20 21 22 3eqtr4g R=SOrdIsoRA=OrdIsoSA