Metamath Proof Explorer


Theorem omege0

Description: If the outer measure of a set is greater than or equal to 0 . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses omege0.o φOOutMeas
omege0.x X=domO
omege0.a φAX
Assertion omege0 φ0OA

Proof

Step Hyp Ref Expression
1 omege0.o φOOutMeas
2 omege0.x X=domO
3 omege0.a φAX
4 0xr 0*
5 4 a1i φ0*
6 pnfxr +∞*
7 6 a1i φ+∞*
8 1 2 3 omecl φOA0+∞
9 iccgelb 0*+∞*OA0+∞0OA
10 5 7 8 9 syl3anc φ0OA